Magazine Science

La durée du jour varie dans l'année, la variation aussi

Publié le 09 février 2014 par Alexm

J'aurais pu appeler ce billet "Inversion de la courbe de la durée du jour", mais, comme l'a rappelé Etienne Klein sur France-Culture, cette notion d'inversion de courbe (utilisée pour le chômage) est aussi erronée qu'incompréhensible.

Mais restons dans l'astronomie, si vous le voulez bien. On le sait, la durée du jour dans nos régions augmente entre le solstice d'hiver (21 décembre) et celui d'été (21 juin). Je me fonde sur les tables du site ' Calendrier solaire ' (désolé ce site a des pubs, mais il est pratique) : elle passe de 8h7mn à 16h2mn (un quasi doublement !).

La durée du jour varie dans l'année, la variation aussi

Mais ce qui nous intéresse ici est la variabilité de cette variabilité : je me suis rappelé cela en remarquant que depuis début février, on remarque beaucoup plus que le Soleil se lève de plus en plus tôt, beaucoup plus qu'en janvier où on ne le remarquait guère. J'ai fait les calculs pour vous,

La durée du jour augmente lentement après le solstice d'hiver, et diminue lentement avant le solstice d'été. Autrement dit, elle varie lentement autour des solstices : car la valeur d'une fonction varie peu au voisinage de ses extrema. On remarquera d'ailleurs qu'à l'équinoxe (le 21 mars), qui n'est pas un extremum, c'est là que la variation est la plus forte (seule fois où apparaît +5mn, le 20 mars).

Et tout ceci est connu depuis des lustres et prédictible pour des lustres. L'astronomie, ce n'est pas l'économie ou la politique : " inverser une courbe ", c'est fastoche !

[ pour ceux qui veulent aller plus loin : à l'équinoxe, c'est la variabilité qui est à son maximum - la dérivée seconde est nulle. C'est un point d'inflexion : la durée du jour est toujours croissante, mais en 'accélérant' (variabilité croissante) entre solstice d'hiver et équinoxe, et en 'décélérant' entre équinoxe et solstice d'été]

[ pour ceux qui veulent se raccrocher à des formules : on peut se représenter la fonction durée du jour comme un cosinus entre sa valeur maximale (solstice d'été) à x = 0 et sa valeur minimale (solstice d'hiver) x = pi. Pour ces deux extrema, la dérivée, fonction sinus, est nulle et la fonction cosinus varie peu autour de ces extrema. L'équinoxe est pour x = pi/2 : la dérivée (sinus) est maximale, la dérivée seconde (cosinus) est nulle : c'est un point d'inflexion]


Retour à La Une de Logo Paperblog

A propos de l’auteur


Alexm 810 partages Voir son profil
Voir son blog

l'auteur n'a pas encore renseigné son compte l'auteur n'a pas encore renseigné son compte