Je vous conseille ce livre très pédagogique sur le langage utilisé en mathématiques qui est souvent confronté à la langue naturelle, ce qui n'est pas sans poser quelques problèmes et demande au passage de nombreuses clarifications. Le sens des termes et des phrases est souvent implicite et le contenu profond original oublié lorsque l'on enseigne ou lorsque l'on ne prend pas le temps d'une réflexion un peu plus poussée.
Présentation de l'éditeur:
Ce livre présente le langage utilisé par les mathématiciens en commençant par la construction et la sémantique des énoncés. Les règles de raisonnement à la base de toutes les démonstrations sont ensuite exposées en détail. Nous détaillons également les éléments de français qui permettent d'exprimer les preuves mathématiques par des textes concis, variés et intelligibles.
La seconde moitié de l'ouvrage insiste sur les difficultés de raisonnement et de langage exclusivement à travers d'exemples. La plupart sont tirés du programme du lycée et de première année universitaire ; d'autres, ludiques et moins conventionnels, ne nécessitent pas de connaissance supplémentaire.
Les nombreux exercices ne testent pas uniquement les compétences mathématiques mais surtout la compréhension des principes de démonstration. à notre connaissance, ce style d'exercice n'existe dans aucun autre ouvrage. Les corrections proposées ne contiennent pas simplement une démonstration possible mais sont souvent accompagnées de commentaires sur le raisonnement sous-jacent.
Ce livre ne traite pas de logique formelle mais se veut une référence pour un cours de mathématiques sur le raisonnement tel qu'il est pratiqué. L'enseignant y trouvera des exemples et des explications qu'il pourra facilement réutiliser. L'étudiant qui aura assimilé les principes présentés sera mieux armé pour s'attaquer à la compréhension de notions mathématiques plus complexes.
Vers la page de l'éditeur "ellipses", sur laquelle on trouve un extrait du livre et la table des matières.