Magazine Science

ITER : Un avenir énergétique sûr, périn et propre ?

Publié le 20 juin 2007 par Benjamin Bradu

Avant de lire les détails de ITER, il va de soit qu'il faut en premier lieu lire l'article énergie nucléaire.

Pour ceux qui ne connaissent pas encore le projet ITER, voici une description succincte en premier lieu.

ITER : Un avenir énergétique sûr, périn et propre ?

ITER ( International Thermonuclear Experimental R eactor) est comme son nom l'indique un projet international ayant pour objectif de construire un réacteur à fusion thermonucléaire. Ce projet regroupe l'Union Européenne, le Japon, la Chine, la Corée du Sud, la Russie, les Etats-Unis et l'Inde. La Suisse et le Brésil ont également demandé une candidature. ITER doit créer un réacteur expérimental, c'est-à-dire que c'est une expérience à vocation de Recherche et non une application industrielle. Néanmoins, le but de cette expérience est d'étudier la faisabilité technique et industrielle d'une supposée future centrale à fusion thermonucléaire qui viendrait détrôner toutes les actuelles centrales nucléaires (utilisant la fission). Ce nouveau procédé permettrait de limiter les déchets radioactifs (ici pas de Plutonium, Uranium ou truc dans le genre) et de produire une quantité beaucoup plus importante d'énergie. Pour ce projet, le site de Cadarache en France à côté de Aix en Provence vient d'être sélectionné cette année. Le coût de construction de ce réacteur est estimé à 5 milliards d'euros sur 10 ans si tout se passe bien.

La presse de vulgarisation scientifique a beaucoup utilisé l'expression : " ITER : Le soleil sur Terre ". Pourquoi ? Tout simplement parce que ce futur réacteur va exploiter le principe de la fusion nucléaire et non la fission nucléaire qui est à l'origine de nos centrales nucléaires actuelles. Toutes les étoiles, et donc notre Soleil, sont en fait d'énormes réacteurs nucléaires à fusion transformant l'Hydrogène en Hélium. ITER produira une fusion entre du Tritium et du Deutérium pour former de l'Hélium (voir article l'énergie nucléaire ).

ITER : Un avenir énergétique sûr, périn et propre ?
ITER est un tokamak comme ses prédécesseurs (une sorte de gros donut) mais il est beaucoup plus grand avec un rayon externe de 6,2m, soit deux fois plus grand que le plus grand tokamak existant. En fusion, l'équation est assez simple, plus le diamètre du tokamak est important, plus l'énergie dégagée est importante. C'est un réacteur qui devrait dégager une puissance de 500MW pendant 400s pour une puissance apportée en chauffage de 50MW (on a alors une amplification d'un facteur 10). Ce projet utilisera toutes les dernières avancées technologiques en supraconductivité. En effet, ITER utilise la fusion par confinement magnétique, il faut donc créer des champs magnétiques très importants (5,3 Tesla au centre du plasma) et par souci d'efficacité, ITER utilisera des aimants constitués de bobines supraconductrices maintenues à quelques kelvins grâce à un système cryogénique (voir article supraconductivité ). Ce projet a de nombreux points communs avec le futur accélérateur de particules du CERN, le LHC, car tous les deux utilisent les mêmes technologies. Je suis d'ailleurs allé l'année dernière quand je travaillais au CERN à un lot de conférences fait par ITER concernant la supraconductivité.

ITER : Un avenir énergétique sûr, périn et propre ?

Les 2 avantages principaux sont la pollution et la quantité d'énergie. Le seul élément radioactif qui entre en jeu est le Tritium (il est néanmoins très faiblement radioactif avec une demi période de 12,3 ans) qui sera directement produit dans le réacteur à partir de Lithium. Les 2 matières premières sont donc le Lithium et le Deutérium qui sont des composants non dangereux que l'on trouve dans la nature. De plus, les réserves sont suffisantes pour plusieurs millions d'années. Le produit de la réaction, l'Hélium, est un gaz rare complètement inoffensif également.

Le problème majeur de la fusion est que pour rapprocher suffisamment des noyaux (pour entraîner une fusion) il faut atteindre des températures incroyables. Pour cela 2 méthodes de chauffage peuvent être utilisées :

- Le chauffage par injection de particules neutres de hautes énergies.

- Chauffagepar ondes électromagnétique

Ensuite, les noyaux d'Hélium créés sont très énergétiques et participent à plus de 60% du chauffage une fois la fusion entamée. Aucun matériau ne peut supporter de telles températures, c'est pour cette raison que l'on utilise d'importants champs magnétiques pour faire de la fusion par confinement magnétique. Le chauffage et la création des champs magnétiques consomment bien sûr de l'électricité. Le coût du kilowattheure pour la " Fusion " se situe entre 1,5 à 2 fois de prix du kilowattheure nucléaire classique " fission ". L'électricité serait donc plus cher mais il n'y aurait pas le problème de stockage des déchets hautement radioactifs.

L'autre problème, celui-ci très préoccupant, et qui à mon avis, peut être un obstacle pour un futur réacteur à finalité industrielle est le bombardement neutronique. On parle assez peu de cet aspect mais c'est un point capital qui pourrait tout faire échouer. On a vu que lors des réactions de fusion, des neutrons sont éjectés à très grande vitesse (il possèdent une importante énergie). Le champs magnétique créé dans le tokamak ne peut évidemment pas bloquer ces neutrons car ils sont électriquement neutres (un champs magnétique capture uniquement les particules chargées) donc ces neutrons énergétiques vont venir bombarder les matériaux alentours. Ce bombardement est réellement violent et au bout d'un certain temps, les matériaux de l'enceinte du réacteur vont être saturés en neutrons et ne pourront plus les stopper entraînant un changement obligatoire et ce n'est pas viable économiquement et changer les matériaux d'enceinte tous les quatre matins. Des recherches sont actuellement faites sur le développement de matériaux absorbant efficacement les neutrons.

ITER : Un avenir énergétique sûr, périn et propre ?

ITER doit valider la faisabilité d'un nouveau type de réacteur générant de l'électricité. L'avantage est que ce type de réacteur permettrait de remplacer intégralement toutes les centrales en place en ayant pour matières premières des éléments qu'on trouve abondamment dans la nature pour un bilan écologique très bon. Pas de gaz à effet de serre, juste de la vapeur d'eau comme les centrales nucléaires actuelles, mais ici on a uniquement des déchets très peu radioactifs et très faciles à gérer contrairement à l'Uranium ou Plutonium qui sont des contraintes écologiques gigantesques avec l'énergie nucléaire actuelles.


Retour à La Une de Logo Paperblog

A propos de l’auteur


Benjamin Bradu 597 partages Voir son profil
Voir son blog

l'auteur n'a pas encore renseigné son compte l'auteur n'a pas encore renseigné son compte