Mes lecteurs, s ils ne partent pas en vacances , s aperçoivent que je raréfie mes articles .C’est normal car l’activité universitaire , scientifique chercheuse ou de développement s’est elle-même mise au ralenti …… Qu ils soient « académiques » ou « hérétiques » les théoriciens vont aussi à la plage ou partent en vacances mettre leurs doigts de pieds en éventail !J ‘ai choisi malgré le battage fait autour de la nuit des étoiles à la tv (« C’est dans l’air » etc.) ou dans les journaux , de vous proposer des résumés de physique anglo-saxonne traduits de ma main !
Les gens sont souvent étonnés quand je leur rappelle que nous n’avons du réel qu’ une représentation liée par exemple aux performances de notre système visuel d’ homo et qu’ il diffère de l’œil du faucon ou du chien etc. …..Et c’ est bien ce que je ressens personnellement en ce moment où ma vue baisse de mois en mois !
La physique vient à mon secours quand en plus de mes lunettes je ferme quasiment mes paupières et en diaphragmant ma vue pour me mettre dans les conditions en optique géométrique de l’approximation de GAUSS . L article dont je vous propose le résumé va dans ce sens .VOICI POURQUOI : son titre est :
Silicon nanorods bend light in new directions
Ultrathin coatings could replace bulky optical components
C est le principe de Fermat qui dit que la lumière se déplace le long de son chemin dans le temps minimal- en accumulant le moins de périodes. Un milieu d'indice de réfraction plus élevé, raccourcit la longueur d'onde et se déphase , donc pour la même distance accumule plus de périodes .
Dans un composant optique conventionnel tel qu'une lentille, les periodes s'accumulent sans interruption quand l'onde se propage et c'est elles qui déterminent la nature de l'onde qui émerge de la lentille. Toutefois, si la période d'une onde pouvait être modifiée de façon discontinue sur une méta surface, alors l onde pourrait, en principe, être manipulée de façon impossible avec l'optique classique.
Bien que ceci soit simple en théorie, le défi des physiciens est de savoir comment créer une telle discontinuité de periode et de phase en utilisant des matériaux réels. En 2011 des chercheurs de l'Université de Harvard dirigée par Federico Capasso et Zeno Gaburro couvraient une surface avec des antennes d'or en forme de V de sorte que la surface pouvait être utilisée pour introduire le déphasage souhaité pour les ondes optiques qui le traversaient. Tout cela permet la redirection arbitraire de la lumière visible ,mais il y a deux problèmes majeurs avec cette approche. En premier lieu, la nature métallique de la métasurface signifie que la majeure partie de la lumière visible sera perdue en s’y déplaçant à travers . Deuxièmement, de fines couches de métal sont très difficiles à travailler et se révèlent incompatibles avec le semi-conducteur complémentaire à l’oxyde de métal (CMOS) utilisé pour fabriquer des appareils électroniques modernes.
Dans la nouvelle étude, Mark Brongersma et ses collègues de l'Université de Stanford en Californie utilisent des antennes optiques sans perte ,en silicium. Lorsqu'elle est éclairée par une fréquence particulière de la lumière (qui peut être choisie en faisant varier son diamètre), l'antenne résonne fortement. Cela force l'onde lumineuse à aller chercher un déphasage qui dépende des orientations relatives des axes de polarisation de l'antenne. En adaptant de façon appropriée les orientations et les distances entre les antennes, la surface peut donner tout déphasage souhaité à la lumière. Cela a permis aux chercheurs de reproduire notamment les fonctions d'une lentille « en vrac » avec une seule couche de nanotubes de 100 nm d'épaisseur.
La méthode risque d’être utilisée dans 36 directions de nouvelles lentilles car l’optique est une science très vivante actuellement et constamment en évolution …. C’est très souhaitable d en tirer le maximum : aussi donnez-vous la peine d’interroger l’article en anglais et cliquez sur le lien du titre
4, 2014
Science)">Science)">Science)">Science)">Science)">Science)">Swirling nanorods: an axicon lens made of silicon