Iter sort de terre en Provence par universcience-lemonde
Iter sort de terre en Provence
En cours de construction à Saint-Paul-lez-Durance, en Provence, le projet international Iter (International Thermonuclear Experimental Reactor) vise à démontrer la faisabilité de la fusion contrôlée pour la production d'énergie. Un chantier hors-norme pour un objectif très ambitieux.
Qu'est-ce que la fusion ?
milliards d'années, les nuages d'hydrogène de l'Univers primitif se sont rassemblés sous l'effet de la gravité et ont donné naissance à des corps stellaires très massifs. Leur noyau extrêmement dense et chaud est le siège du processus de fusion.
Comment la fusion produit-elle de l'énergie?
La masse de l'atome d'hélium ainsi obtenu ne correspond pas exactement, toutefois, à la somme des masses des deux atomes de départ. Un peu de la masse a disparu et une grande quantité d'énergie est apparue. Ce phénomène est exprimé par la célèbre formule d'Einstein E=mc² : l'infime perte de masse (m) multipliée par le carré de la vitesse de la lumière (c²) produit un nombre très élevé (E) qui correspond à la quantité d'énergie créée par la réaction de fusion.
Chaque seconde, le Soleil transforme 600 millions de tonnes d'hydrogène en hélium, libérant ainsi une gigantesque quantité d'énergie. Faute de pouvoir disposer, sur Terre, de l'intensité de la force gravitationnelle à l'œuvre au cœur des étoiles, une nouvelle approche a été développée pour réaliser des réactions de fusion.
La fusion sur la planète Terre
À ces températures extrêmes, les électrons sont séparés des noyaux et le gaz se transforme en plasma, un gaz chaud électriquement chargé. Dans les étoiles, comme dans les machines de fusion, les plasmas constituent un environnement dans lequel les éléments légers peuvent fusionner et produire de l'énergie.
Le noyau d'hélium est porteur d'une charge électrique. Il sera donc soumis aux champs magnétiques du tokamak et restera ainsi confiné dans le plasma. Toutefois, 80 % environ de l'énergie produite sera emportée hors du plasma par le neutron qui, n'étant pas chargé électriquement, demeurera insensible aux champs magnétiques. Les neutrons seront absorbés par les parois du tokamak, transférant leur énergie à ces dernières sous forme de chaleur.
Dans l'installation ITER, cette chaleur sera évacuée par des tours de refroidissement. Dans le prototype de réacteur de fusion (DEMO), qui succédera à ITER, ainsi que dans les futures installations industrielles de fusion, la chaleur sera utilisée pour produire de la vapeur et, au moyen de turbines et d'alternateurs, de l'électricité.
http://www.iter.org/fr/sci/Whatisfusion