Magazine Science

Surfaces minimales

Publié le 28 avril 2008 par Guy Marion
En mathématiques et en physique, une surface minimale est une surface minimisant son aire. Ce minimum est réalisé sous une contrainte : un ensemble de points, le bord de la surface, est d'avance déterminé. Si un cerceau est retiré d'une bassine d'eau savonneuse, un disque de liquide reste fixé. Un souffle dessus déforme légèrement le disque en une calotte sphérique. Si l'étude fait appel à la physique des liquides, le traitement mathématique utilise le langage des surfaces minimales. Usuellement, une définition oblige de préciser le contexte : quel est l'espace ambiant ? quel sens donné à la notion d'aire ? à la minimisation ?


Intuitivement, une surface minimale est une surface dont l'aire ou le volume ne peut qu'augmenter lorsqu'on lui applique une perturbation suffisamment petite. Les surfaces minimales forment donc l'analogue en dimension supérieure des géodésiques (courbes dont la longueur ne peut qu'augmenter sous l'effet d'une perturbation assez petite et assez localisée).
Pour en savoir plus

Retour à La Une de Logo Paperblog

A propos de l’auteur


Guy Marion 246 partages Voir son profil
Voir son blog

l'auteur n'a pas encore renseigné son compte l'auteur n'a pas encore renseigné son compte