Le livre numérique de l'environnement et du développement durable

Publié le 11 février 2008 par Olivier Leguay

Offrir une vision globale et cohérente du fonctionnement de notre planète, tel est l'objectif de ce nouvel outil numérique. L'ouvrage constitue une véritable introduction aux Sciences de l'environnement et du développement durable. Près de 80 scientifiques, tous experts dans ce domaine, ont participé à sa conception. Destiné aux étudiants de niveau Licence ainsi qu'au public averti, cet ensemble, unique en France, s'avère également un excellent outil de formation pour les enseignants du primaire et du secondaire. Il est en libre accès.  

Créée sous l'impulsion de la Sous-Direction TICE, Service des Technologies et des Systèmes d’Information du Ministère de l’Education nationale (SDTICE). L'Université Numérique Thématique Environnement et Développement durable prend le nom d'UVED (Université Virtuelle Environnement et Développement durable) et est à l'origine de ce projet.

Les quatre entrées du livre:

1. CHANGEMENTS GLOBAUX
2. DYNAMIQUE DES RESSOURCES NATURELLES
3. ANALYSE ET GESTION DES RISQUES
4. INSTITUTIONS ACTEURS SOCIETES ET TERRITOIRES

Pour consulter  l'ouvrage, c'est ICI

On y trouvera en particulier pour la partie qui nous intéresse ici :

Le monde réel est-il prédictible ? La première de ces limitations est intrinsèque au système climatique lui-même : ce n’est tout simplement pas un système entièrement prévisible. Cette caractéristique est associé à une propriété mathématiques des équations, qui ne sont pas linéaires, et mélangent les échelles de temps et d’espace. C’est d’ailleurs pour cela qu’elles ne peuvent se résoudre de manière analytique, et que le recours à l’ordinateur est indispensable. Il existe ainsi une limite de prévision particulièrement courte pour la composante atmosphérique : à échéance de dix jours environ, l’évolution météorologique ne peut plus être prédite, parce que le caractère instable de l’écoulement a répercuté à l’ensemble du globe une toute petite erreur initiale. C’est l’effet bien connu, découvert par Edward Lorenz en 1963, popularisé sous le nom d’« effet des ailes de papillon » : il exprime que toute perturbation, aussi minime soit-elle, modifie irréversiblement l’histoire de l’atmosphère. Certaines composantes du système climatique, telles la végétation, présentent également une complexité intrinsèque qui résulte plutôt de la diversité des processus qui entrent en compétition : il est ainsi impossible de prévoir avec certitude l’évolution de toutes les essences d’un massif forestier et leur impact climatique en retour. Mais ces incertitudes ne signifient pas qu’aucune information ne puisse être obtenue sur l’évolution du climat. Plusieurs processus guident ainsi les mouvements de l’atmosphère ou de la végétation, et organisent leur comportement. Certains sont externes au système climatique, tels les fluctuations du rayonnement solaire incident, par exemple à l’échelle saisonnière, ou les émissions de gaz à effet de serre par les activités humaines. D’autres sont internes et correspondent aux composantes lentes du système climatique, telles que l’océan, ou les grands glaciers, qui organisent son évolution à des échelles allant de quelques années (pour les couplages de l’océan tropical avec l’atmosphère) à quelques milliers d’années.
Les modèles sont-ils perfectibles ? Les modèles ont subi au cours des années récentes une évolution très importante vers un réalisme accru, qu’il s’agisse d’une augmentation de la résolution spatiale ou encore l’intégration d’un ensemble de processus de plus en plus grand. Ce processus n’est pas achevé. Les modèles sont encore le plus souvent des modèles physiques, qui négligent les composantes biologiques ou chimiques du climat, dont le rôle essentiel apparaît pourtant de plus en plus clairement. Les aérosols soufrés, par exemple, ont été reconnus comme l’un des facteurs importants susceptibles de masquer, dans l’hémisphère nord tout au moins, les manifestations initiales de l’effet de serre. La teneur atmosphérique en CO2 dépend aussi d’un cycle complexe où interviennent à la fois la formation du phytoplancton ou du zooplancton dans les océans, et la photosynthèse ou la respiration de la végétation continentale. On sait qu’une moitié seulement du CO2 émis par les activités humaines reste dans l’atmosphère, le reste étant repris par les océans ou la biosphère. La chimie du méthane, de l’ozone constitue aussi un ensemble de processus complexes qui intègre peu à peu les modèles pour former ce que l’on a appelé plus haut les modèles du « Système terre ».
L’accumulation de ces éléments de complexité pose problème. On pourrait même dire, en forçant le trait, que plus la recherche progresse, plus se révèle l’énorme complexité des processus qui participent à l’évolution de notre environnement, et plus s’éloigne la possibilité de prévoir en détail l’évolution future du climat. Mais en même temps, et de manière apparemment contradictoire, la capacité d’expertise face à ce système a considérablement augmenté, et le niveau de certitude quant à la réalité du réchauffement futur est devenu beaucoup plus grand. La variété des processus dont le rôle a été étudié qualitativement est désormais très grande. Ainsi le fait que des modèles toujours plus nombreux et sophistiqués indiquent sans exception un accroissement de température important dans le futur constitue une indication très forte. En dépit de la complexité du système étudié, de la diversité des pays et instituts engagés dans la recherche sur le climat, de la diversité des modèles, de l’effet de publicité énorme qui serait attaché à un tel travail, personne n’est parvenu à mettre au point une expérience numérique crédible conduisant le système climatique à ne pas se réchauffer en réponse à l’augmentation des gaz à effet de serre.