Magazine High tech

Papier accepté dans la revue Solar Energy

Publié le 27 août 2010 par Cpaoli
Papier accepté dans la revue Solar EnergyUn de nos papiers vient d'être accepté pour publication dans la revue "Solar Energy" de l'"International Solar Energy Society", éditée par Elsevier.
Title of the paper : Forecasting of preprocessed daily solar radiation time series using neural networks
Authors : Christophe Paoli, Cyril Voyant, Marc Muselli, Marie-Laure Nivet
Abstract :  In this paper, we present an application of Artificial Neural Networks (ANNs) in the renewable energy domain. We particularly look at the Multi-Layer Perceptron (MLP) network which has been the most used of ANNs architectures both in the renewable energy domain and in the time series forecasting. We have used a MLP and an ad-hoc time series preprocessing to develop a methodology for the daily prediction of global solar radiation on a horizontal surface. First results are promising with nRMSE ~ 21% and RMSE ~ 3.59 MJ/m². The optimized MLP presents predictions similar to or even better than conventional and reference methods such as ARIMA techniques, Bayesian inference, Markov chains and k-Nearest-Neighbors. Moreover we found that the data preprocessing approach proposed can reduce significantly forecasting errors of about 6% compared to conventional prediction methods such as Markov chains or Bayes inferences. The simulator proposed has been obtained using 19 years of available data from the meteorological station of Ajaccio (Corsica Island, France, 41°55'N, 8°44'E, 4 m above mean sea level). The predicted whole methodology has been validated on a 1.175 kWc mono-Si PV power grid. Six prediction methods (ANN, clear sky model, combination …) allow to predict the best daily DC PV power production at horizon d+1. The cumulated DC PV energy on a 6-months period shows a great agreement between simulated and measured data (R² > 0.99 and nRMSE < 2%).
Keywords: Time Series Forecasting, Preprocessing, Artificial Neural Networks, PV Plant Energy Prediction.
Sources :  http://www.elsevier.com Christophe PAOLI : Enseignant, chercheur, auto entrepreneur en informatique à l'Université de Corse

Retour à La Une de Logo Paperblog

A propos de l’auteur


Cpaoli 20 partages Voir son profil
Voir son blog

l'auteur n'a pas encore renseigné son compte l'auteur n'a pas encore renseigné son compte

Dossiers Paperblog

Magazine