Magazine Blog

Venir à bout de la malédiction des intégrales multidimensionnelles

Par Olivier Leguay

Friedrich Pillichshammer a développé, avec le concours de mathématiciens australiens, une méthode pour intégrer à l'aide de réseaux numériques une importante classe de fonctions à grand nombre de variables. Dans un second temps, les mathématiciens ont découvert une solution pour construire pas à pas de tels réseaux numériques.
La malédiction des intégrales à très grande dimension est une conséquence des méthodes d'approximation utilisées, telle la méthode de quasi-Monte-Carlo. Il s'agit dans ce cas de choisir un ensemble de points du champs d'intégration, au lieu du champs d'intégration lui-même, et d'en extraire ensuite le maximum d'information. Or, y compris en disposant les points conformément aux prescriptions les plus pertinentes, pour arriver à approcher de façon satisfaisante l'intégrale, la quantité de points dépend de la dimension de l'intégrale. En l'occurrence, ce nombre croît très fortement avec la dimension. Ce fait constitue la "malédiction".
La méthode des mathématiciens permet de s'affranchir de cette contrainte ; un réseau à une dimension est établi, à partir duquel la seconde dimension est déduite, etc., le tout en limitant l'erreur globale.
Source : Bulletins électroniques : ICI


Retour à La Une de Logo Paperblog

A propos de l’auteur


Olivier Leguay 1825 partages Voir son profil
Voir son blog

l'auteur n'a pas encore renseigné son compte l'auteur n'a pas encore renseigné son compte

Dossier Paperblog