Magazine Blog

Erathostène

Par Olivier Leguay

5e34092e93363c4d403bd06bf8d951fb.jpgAnaxagore de Clamozènes (500-428 av. J.-C.) s'était trompé.

Il savait que la distance entre Alexandrie et Syène était égale à 5 000 stades, soit 800 km environ; en estimant certainement que les caravanes de chameaux mettaient cinquante jours pour venir de Syène à Alexandrie et parcouraient environ 100 stades par jour, la distance entre les deux villes devait être d'environ 5000 stades, soit 800 km.

Il savait aussi qu'un gnomon ( bâton ) vertical planté à Syène n'a pas d'ombre à midi le jour du solstice d'été, alors que le même jour et à la même heure, les rayons du Soleil font un angle de 7° avec un gnomon vertical à Alexandrie.
Malgré cela Anaxagore conclue que la Terre est plate. Pourquoi ?

0f78313cd4a3b10ab31a16f766a642b8.jpg
Tout simplement parce qu'il considère que le soleil est trop proche de la terre pour que l'on puisse considérer ses "rayons" parallèles. Afin de visualiser l'expérience, cliquez sur le lien suivant, ICI, double-cliquez sur l'animation puis positionnez le curseur en haut à droite sur Anaxagore. Faites apparaître le gnomon, afin de rendre l'ombre du gnomon visible, c'est le curseur en bas à gauche.

Pour la « petite histoire », le philosophe Anaxagore avança une théorie scientifique du Soleil qui niait l’existence d’Hélios. Il proposa que le Soleil n’était autre qu’une masse incandescente plus grande que les terres du Péloponèse. Pour cette offense, il fut emprisonné puis condamné à mort.

3460125aa98c5abea5feae0ce6953c3e.jpg
Avec les mêmes résultats, Erathostène (vers 276-vers 194 avant J.-C.), calcula le périmètre de la terre avec seulement une erreur de 2 % et quelques années auparavant, Aristarque de Samos affirmait déjà que la terre tournait autour du soleil !
Erathostène compris que le soleil devait être très éloigné de la terre et que l'on pouvait considérer ses "rayons" comme étant parallèles. Revenez à l'animation précédente et déplacez le curseur sur Erathostène pour visualiser cette différence fondamentale.
0017a069a7bd498a5e300bfc225cd6b8.jpg

Avec ces moyens très rudimentaires, Erathostène évalue le rayon de la terre à environ 6500 km et sa circonférence à 39375 km, ce qui est très proche de la réalité ( 40 075,017 km par l'équateur et 40 007,864 km par les pôles).

Je vous conseille en passant d'aller voir la page ( et le site ) de " Mathématiques Magiques" : Mesurer la circonférence de la terre, ICI, vous pourrez y faire varier la distance entre les deux villes où des mesures sont faites. Deux exemples sont donnés en fonction du fait que les villes sont ou non dans le même hémisphère.

d6098428db4a4e8fe6a2c7c4ff0c221d.jpg
Erathostène aujourd'hui :
La mesure de la terre avec la méthode d'Erathostène est actuellement  pratiquée par de nombreux établissement scolaires.
Il suffit de trouver une classe dans un établissement situé de préférence sur le même méridien et de se mettre d'accord pour effectuer des mesures au midi vrai de l'ombre d'un gnomon. Voir ICI
Pour approfondir : La figure de la terre dans l'Antiquité : ICI

685ddb374f8c5bfb5099788595927134.jpg
On attribue aussi à Erathostène, une méthode éponyme, le crible d'Erathostène, cette méthode permet d'extraire de tous les nombres entiers, les nombres premiers. En fait le raisonnement est très simple: un nombre premier n'est divisible que par 1 et  lui-même, ainsi dès que l'on en a trouvé un, ses multiples ne peuvent pas être premiers. En débutant ce constat à 2, en barrant ses multiples et en poursuivant à 3, puis à 5, on passe au crible tous les nombres et ne restent que les nombres premiers. Pour visualiser cette méthode, rende-vous encore sur le site " Mathématiques magiques" : ICI


Retour à La Une de Logo Paperblog

A propos de l’auteur


Olivier Leguay 1825 partages Voir son profil
Voir son blog

l'auteur n'a pas encore renseigné son compte l'auteur n'a pas encore renseigné son compte